Algebra 2

7-02 Graphing Rational Functions

Rational Functions

- Functions written as a \qquad with x in the denominator
- $y=\frac{1}{x}$
- Shape called \qquad

General form

- $y=\frac{a}{x-h}+k$
- $\quad a \rightarrow$ \qquad vertically
- $h \rightarrow$ moves \qquad
- $k \rightarrow$ moves \qquad
How is $y=\frac{2}{x+3}+4$ transformed from $y=\frac{1}{x}$?

How to find asymptotes

- Vertical asymptote

1. Make the \qquad $=0$ and solve for \qquad

- Horizontal asymptote

1. Substitute a \qquad number for \qquad and \qquad

- Or

1. Find the degree of \qquad
2. Find the degree of \qquad (D)
a. If $\mathrm{N}<\mathrm{D}$, then \qquad
b. If $N=D$, then \qquad
c. If $\mathrm{N}>\mathrm{D}$, then

Find the asymptotes for $y=\frac{2 x}{3 x-6}$

Domain

- All x 's except for the \qquad asymptotes

Range

- All the y 's covered in the graph
- Usually all y's except for \qquad asymptote

1. Find the

Graph $y=\frac{2}{x+3}+4$ and state the domain and range

Rewrite $g(x)=\frac{2 x+5}{x+2}$ in the form $g(x)=\frac{a}{x-h}+k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x)=\frac{a}{x}$.

Rewrite $g(x)=\frac{5 x+6}{x+1}$ in the form $g(x)=\frac{a}{x-h}+k$. Graph the function. Describe the graph of g as a transformation of the graph of $f(x)=\frac{a}{x}$.

366 \#5, 9, 13, 17, 21, 25, 29, 31, 39, 41, 57, 59, 61, 63, $67=15$

